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The accomplishments of the research project are advancements in the state of
knowledge in the reliability assessment of ship structures against fatigue.
Fatigue life of ship structural components is believed sensitive to load events
exceeding certain thresholds. Ocean waves are known to be the dominant
source of fatigue in ship structures. Thus, this fatigue investigation has spanned
three technical areas: direct prediction of fatigue damage in non-Gaussian load
environments, prediction of probability of exceeding specified load thresholds in
non-Gaussian environments, and simulation and prediction of non-linear, non-
Gaussian ocean waves. Some of the methods developed are applicable to many
different structural types beyond ship structural components. In these cases, the
methods have been additionally tested and verified against wind-turbine fatigue
data because turbine-blade fatigue data was available to the project.

In the predicting fatigue damage in non-Gaussian load environments, research
has concentrated on the fitting of up to three statistical models to observed load
data and on application of these models to predict long-term fatigue
accumulation from short-term observed data. A broad variety of statistical
models have been fit using the method of moments, and the resulting models
have been tested against measured data for ship fatigue and for wind-turbine
blade fatigue applications.

In the prediction of exceeding specitied load thresholds, use of four-moment
Hermite models, analytic formulae, first-order reliability method (FORM),
statistical bootstrapping methods, and fitting of various statistical models have all
been proposed and tested against measured physical data. @ Numerical
algorithms in the form of computer software have been developed as in an effort
to more fully understand these phenomena. Example applications have included
prediction of extreme statistics of wind-driven ocean waves, and of motions of a
spar production platform subject to these waves.

In the prediction of non-linear non-Gaussian ocean waves, a methodology has
been developed to simulate second-order random ocean waves to match a target
sea spectrum. The inverse has also been developed: identifying the first- and
second-order components underlying a specified wave time-history. The results
of both the simulation and identification methodologies can be used to predict
consistent wave time-histories at other spatial locations. Results of this
methodology have been verified against observed wave time-histories both from
field data and from model test measurements.
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ABSTRACT

The main objective of this thesis is to study procedures to estimate statistics of extreme
responses to random excitation. Various methods are applied to predict the extreme
statistics of the horizontal offset of a spar buoy, consisting of 3 dominant frequency
bands; resonant surge, resonant pitch, and wave frequency response. In order to study the
effect of limited data, both 1 hour of model test data and 36 hours of computer simulated
data were analyzed. Gumbel, standard Weibull, quadratic Weibull, and Hermite models
were fitted using the method of moments. The local peaks of the components of the
response appeared to be well described by the Rayleigh model (of which the Weibull is a
generalization) when fitted to the simulated data. The distribution of the total response,
being a mixture of 3 Rayleigh distributed variables, was better described by the Hermite
(local peaks) and Gumbel distributions (global peaks). For the observed 1 hour of data,
the distributions of the components seemed considerably more narrow and “pinched”. We
show this to be largely due to the effect of limited data, which biases the higher moments
in particular. However, it is not unlikely that limitations of the computational model
account partly for this discrepancy. Estimates of the uncertainty in our predictions were
made using non-parametric bootstrapping, which were compared to results from
simulation. The results suggest that computer simulations provide good results, while
non-parametric bootstrapping appears to be less suitable to estimate statistics of extremes.
In addition, it appears that for all models the uncertainty in the predictions of the mean
max can be reduced by dividing the limited data into short-duration segments, from

which many estimates of the mean max can be made by extrapolating a fitted model.
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INTRODUCTION

Objective

The main objective of this thesis is to study procedures to estimate statistics of extreme
responses to random, excitation. The specific application here is to the response of
floating structures, though the methods surveyed here have more general applicability.
With the exploration of oil and gas in very deep water, such as the Gulf of Mexico, West
Africa, and the North Sea, floating structures have become a very important concept for
operators, replacing jacket and tower structures. In deep water, jacket and tower
structures are at a disadvantage as they become too flexible. Their natural frequencies
decrease towards values where there is a significant amount of wave energy, causing
dynamic excitation. Floating structures generally have their natural frequencies of
oscillation well away from the primary wave frequencies. Although they can still be

excited dynamically, they are considerably more cost effective in deeper water.

While wave loads on a jacket or tower structure can be estimated in a fairly
straightforward manner with Morison’s empirical formula, the loads on floaters generally
require more complicated diffraction models. An important complication is that the
dynamic response of floaters is governed by two random variables, the wave height and
the wave period, while in the case of a regular jacket or tower structure only the wave
height dominates the quasi-static response. The use of more complicated (non-linear)
response models complicates the statistical analysis of the response. Various methods,

which can be used in the design process will be discussed and applied for a spar buoy in
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this report. The accurate prediction of extreme behavior is critical in the design process.
The shift to floating structures has created a need for appropriate statistical models. This

work is intended to provide some insight and explore some possibilities to address this

need.

Background

Limit States

During the design of a structure one has to consider all possible ways the structure can
fail, and assure that the probability of failure is sufficiently small. Failure implies that the
structure cannot satisfy its functional requirements anymore, which need not be
equivalent to collapse. These functional requirements are generally modeled as limit
states Mj(X,,X2,...,Xn), Which can be functions of many random variables. The probability
that a certain limit state is exceeded (M; < 0) determines how reliable or safe the structure
is with regard to that limit state. The combination of all limit states determines the total
probability of failure. Generally a limit state is expressed as M = R — L, where R
represents the resistance, and L represents the load. More generally, R and L should be
considered general “capacity” and “demand” variables respectively. These may be
expressed in terms of loads, load effects, or resulting response quantities. Many reliability
studies now consider displacement (or ductility) demands, as we will do here. For
offshore structures subject to wave loads, the analysis generally comprises of two time-
scales, which are typically referred to as “long term” and “short term”. The motivation
for this divide is that the wave environment, and hence the structural response, is

generally a slowly evolving non-stationary random process. Generally this situation is
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modeled by assuming the random wave process to be stationary for short-term periods or
sea states, and calculating the statistics for a sea state conditional on the long-term
environmental parameters, by which it is defined. Both time scales are discussed in the

following paragraph.

The Extreme Response

The limit state we are concerned with here, is failure caused by extreme overload due to
ocean waves. The particular case we will analyze in chapters 3 and 4 is the extreme
horizontal offset of a spar buoy (where, as noted above, the offset is the load L). If the
spar exceeds a certain limiting offset (i.e. the resistance R), failure occurs. In many cases
the variability in the resistance is negligible compared to the variability in the load, and
the problem reduces to the load exceeding a certain deterministic value. The random
variables that determine the statistics of the waves (and the response) are the significant
wave height Hs, the spectral peak period Tp, and the extreme response Xmax given these
two parameters that define the stationary random process. The quantity Hs determines the
area cnz = (Hs/4)? , under the wave power spectrum, while Tp corresponds to the
frequency with maximum power. The so called “short term” problem is to estimate the
statistics of Xmax given Hs and Tp, while the “long term” problem then includes
randomness in Hs and Tp across various sea states. We focus here on the “short term”
problem only, assuming Hs and Tp are fixed (coinciding, for example, with available
steady state model test conditions). The long term problem can be handled by

conventional methods; e.g. Form (Madsen, 1986) or simulation (Melchers, 1987).




The extreme response, Xmax, Will be a random variable, which can be modeled, by
considering the response process x(t) over different time scales. The various time scales,
and appropriate distribution models for the standard Gaussian case are discussed below.

We begin here at the finest time scale, and proceed to increasingly global time scales.

Model of the Entire Process, X(t).

At the finest time scale, we may seek to model the cumulative distribution function
(CDF) Fx(x) of the random process x(t) selected at arbitrary time t:

F,(x)=P[X(t)< x] 1.1

In the most common case X(t) is assumed Gaussian, in which case Fx(x) can be evaluated

numerically in terms of only the-mean L, and the standard deviation o, of the process

X(t):
F, (x)= cp[f——-fitj 1.2

In which ®(u) is the standard normal distribution function.




Model of Local Peaks, Y.
We may instead choose to ignore all points of the time history except its local peaks,
typically defined as the largest peak per upcrossing of the mean level. For a narrow-band

normal process, this results in a Rayleigh distribution for Y, which again depends on the

mean }l, and the standard deviation 6, of the process X(t):

Fy(y)=1—exr>{—g—;:+)2J | 13

X

For y > 0 only.

Model of Global Peaks, Z.

Finally we may instead choose the maximum value Z over a still coarser time scale,
comprising multiple peaks (e.g., 10-minute maxima, 1-hour maxima). As when
proceeding from the process to the local peaks, this step has the advantage of focussing
more on the upper tail of interest, and the corresponding disadvantage of using less
detailed information about the time history.

Generally the distribution function of Z is commonly estimated from that of Y as follows:

F,(2)=[F, ()" 14

In which N here is the number of local peaks (Y values) within the duration over which Z
extends (again 10 minutes, 1 hour, etc.). eq 1.4 assumes both that the number of peaks, N,

is deterministic and that their levels are mutually independent. Neither assumption is
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strictly correct, but corrections commonly become less significant as we consider

extremes in the upper tails of the response probability distribution. In the Gaussian case,

combining egs. 1.3 and 1.4 yields the results

F, (z)= l:l —exp[——(—{-;f;—)zﬂ
) ' 1.5

This finally gives us the distribution of the extreme response based on the mean and
standard deviation of the process itself and the number of local peaks. Although this
result is widely used, the response of a floating offshore structure is generally not
Gaussian due to non-linearities in the response that cause non-Gaussian behavior even if
the wave process is Gaussian, which it is only by approximation. The various models that
are available for X, Y and Z in the non-Gaussian case are discussed in chapter 2. Given
arbitrary distributions Fy(y) or Fz(z) the global extreme distribution can also be estimated

from the distribution of shorter-period global extremes similar to eq. 1.4.

e )

If Fy has been fit we use the top expression in equation 1.6, in which Ny is the number of

local peaks expected in time T. If F7 has been fit, we use the bottom expression in




equation 1.6, in which Nz is the number of global peaks (e.g. number of 10-minute or 1-

hour segments) in time T.

Uncertainty Estimates through Bootstrapping

Finally, bootstrapping methods (e.g., Efron and Tibshirani, 1993) are used here to
estimate the statistical uncertainty associated with any/all of our estimated statistics of
Xmax- The method is conceptually straightforward, generating multiple *“equally likely”
data sets by simulating, with replacement, from the original data set. Thus some of the
data values will be repeated multiple times, while others will be omitted, in any single
bootstrap sample (which is of the same size as the original data set). The same estimation

procedure performed for the original data set is repeated for each of the bootstrapped

samples, and the net statistics on the results are collected and reported.

The bootstrap method is “non-parametric” by definition, in that it operates with no
additional information beside the actual data values. Alternative approaches might fit a
parametric model, either statistical or

physical, to generate additional “equally likely” samples from which to infer sampling
variability levels. Such approaches may confer advantages in some cases but are
generally problem-specific; the prime virtue of the bootstrap method lies in its generality.

We will consider both bootstrapping and parametric, simulation-based approaches here.




Problem Description

Model Tests

For floating offshore structures model tests are often performed in order to verify and
calibrate a computational model that can reproduce the observed times trace of the
response from the observed wave history. In addition the results can be used to directly
estimate the extremal statistics, and the distribution of the global peak of the response for
a certain sea state (i.e. for random realizations from a specific wave spectrum
characterized by Hs and Tp). An important question that arises for model tests is how
accurate the results are, or more precisely how much data must be simulated to obtain the

required accuracy.

Statistics of the Extreme Response
As mentioned earlier, the highest response Xmax in a certain period of time will be a

random variable with a certain distribution. We may be concerned with estimating
various statistics of this distribution; e.g. the mean hourly max p(Xmax,) its standard
deviation 6(Xmax,) upper fractiles of Xy, etc. Once such an estimate is made, a measure
of the variability of this estimate, e.g. its standard deviation, would be a second important
number to report. If , for example, we have 10 hours of data for a certain phenomenon
and are interested in estimating the mean hourly maximum, W(Xmax,) , Wwe would have 10

“observed” hourly extremes X;...Xo, from which we can determine the sample mean,

X =L XX, and the sample standard deviation, S, = \/ﬁ 5(X,-X)* . The sample
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mean would be our best estimate of the 1-hour mean max, W(Xmax,). The standard
deviation of the mean, which is equal to the standard deviation, sx, divided by the square

root of the number of observations, would measure the accuracy of our estimate.

The first observation is that we use very little of the available data, i.e. only one value per
hour. By using very few numbers to estimate the mean or any other statistic, we have a
relatively large amount of statistical uncertainty. The question now arises whether it is
possible to use more of the available data by fitting a model of e.g. the local peaks, and
deriving the distribution of the relevant global peaks, in order to reduce statistical
uncertainty of the hourly extreme in this case. The price we pay is that the more data we
use, the less relevant the included data points will be to the extreme value we are trying to

estimate, increasing model uncertainty.

The Hybrid Method

The hybrid model addresses the problem of data usage by fitting a parametric distribution
of the extreme response to each hour in the previous example. As discussed earlier, this
approach allows any amount of data between the number of parameters and the entire
data set to be included in the estimate, by modeling the process, the local peaks, or the
global peaks. From the fitted distribution of Y or Z, the distribution of the extreme
response and its mean for that specific hour can be determined. The hope is now that the
variability in these 10 estimated means is less than the variability of the 10 observed

extreme values, while they are estimates of the same value. The expectation is that there




is an optimal combination between the amount of data used to fit the model and the

relevance of the data to the prediction.

Torhaug (1995) applied the hybrid method to determine the extreme response of jack-up
structures, specifically modeling either all peaks, Y, or the entire process, X. In this case,

he found that the variability could be decreased by a factor of 2.5, which would reduce

the amount of required data to achieve the same accuracy with a factor of 6.

Scope and Organization

Chapter 2 discusses methods to fit the data, and probability distributions for the process,
the local peaks, and the global peaks. The models that are discussed were implemented in
a computer routine “MAXFITS” (De Jong and Winterstein, 1998). The code is based on a
distribution library that is also used for the “FITS” routine (Kashef and Winterstein,
1998). The program was used to analyze OTRC spar buoy data to address the problem

described in this chapter, and to explain and demonstrate the routine for general use.

Chapter 3 describes the analysis of the spar buoy data in detail. It discusses the
distributions of the process, the local peaks, and the global peaks respectively. Estimates
of the uncertainty are made, and the various methods are compared using 1 hour of
measured data. Chapter 4 compares the results of chapter 3 to results based on a much
larger amount of simulated data in order to reduce statistical uncertainty. The chapter
cqncludes with recommendations for “optimal” data use. The final chapter summarizes
the findings of this work, and makes recommendations for future research. It is important

10




to note that this work is limited to the statistical analysis of stationary relatively short
periods or sea states. The results are intended to be used in long-term analyses, for which
various routines have been developed such as “HTCNTR”, “IFORM”, and “SURFIT”, which

is discussed by Engebretsen, 1998.
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SOLUTION METHODS AND APPROACHES

Fitting distribution parameters

All probability distributions used here require a limited number of parameters to be
determined in way that allows us to describe the data ‘best’. What is best is a somewhat

subjective issue, although there are several “goodness of fit” measures available (e.g.

Benjamin and Cornell, 1971). The following fitting methods can be used:

e Least squares method
e Maximum likelihood estimate

e Method of moments

The least squares fit, which returns distribution parameters that minimize the sum of the
squares of the differences between the model and the data, is commonly used. One can
imagine that a small change in one of the parameters will hardly affect predictions in e.g.
the body of the distribution, but might have a very significant effect on the tail of the
distribution. Turning this logic around, different data points are not equally “weighted” in
the fit. Their “weight” depends on the type of distribution and is completely arbitrary.
This method is not preferred for this reason. An alternative to the least squares fit is the
maximum likelihood estimate. This method maximizes a likelihood function, which
expresses the likelihood of observing the data set given the set of parameters sought. An

analytical solution to this maximization problem is not always available, in which case
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numerical methods must be used. The method used here is the method of moments. The
parameters are related to the statistical moments, which represent all data in a consistent

manner. The analytical expressions for these relations will be worked out further on.

The moments are defined as:

MU, (x)= E° x' f(x)x fori=12,. inthe continuous case 2.1a

pi(x)=3,, *xplx fori=12,. inthe discrete case 2.1b

Where y; is the i™ moment and f{x) is the probability density function. Usually only the
first four central moments are used, from which the true mean (i), standard deviation (o),

skewness (03), and kurtosis (04) can be estimated as follows:

m, 13 X; 2.2
L=
1¢ 2
sf=;2(x,.—mx) 7 2.3
i=l
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3
n —-m
Y of 2.4
n i=l SX
1 4
N x,—m
a,=— — 2.5
n g S,
where:
my :sample mean of x Sx : sample standard deviation of x
a3 : sample skewness of x a : sample kurtosis of x
n : sample size (sometimes3 is subtracted, as this is

0y of a normal distribution)

These expressions are the most commonly used, but some may be biased in certain cases.
For independently sampled data, the following corrections can be shown to produce
unbiased estimates of the quantities oxz, a30x3 , and 0(40'x4 (the response cumulants)

(Fisher, 1928).

st= d 2.6

n-143 n

2 3

3 n & (x —m, )

_ =m, 27
Sxfl3 (n—l)(n—2),§‘ n

2 n 4 n 2 2

*a,~3)= i ey Gmm )y gy lumm)’ g
s:(ae=3) (n—1){n-2)n-3) (r )E n (n ,=Z, n
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Eqgs. 2.7-2.8 may still produce bias in their estimates of the unitless quantities 03 and 4.

No general results (independent of distribution type) are available for 0z and oy directly.

Distributions

The choice of what distribution model to use in what situation is very much a property of
the data. For Gaussian data the models discussed in chapter 1 suffice. In the non-
Gaussian case we need to employ different, more general models. Various alternative
distribution models for the process, the local peaks, and the global peaks are discussed in

the following paragraphs.

The Process, X

A Gaussian process will plot as a straight line on normal probability scale. Non-Gaussian
data will tend to show curvature on this scale. One way to add curvature to the model, is
to distort a standard normal distribution such that it plots as a polynomial on normal
probability scale. It has been shown by Winterstein, 1988) that a cubic transformation of
the standard normal distribution can often capture non-Gaussian aspects due to various
non-linear mechanisms. In this form it is generally referred to as the Hermite distribution,
which can match the first four moments of the data. Another popular transformation of a
normal process is to exponentiate it, leading to a “lognormal” process (i.e. one whose
logarithm is normal). This process can match only two moments, however, and its upper

tail generally decays too slowly for accurate extreme estimation.
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Hermite

The Hermite distribution is a cubic transformation of a standard normal distribution:

fu )= p=expl-4u?) .
where:
x=g(u)
2.10
=mx+K'O'x[u+C3(u2_1)+c4(u3_3u)] forou >3 .
u=g'(x‘) . X-m,
) : 3 x = for o4 < 3 2.10b
ool s) YT

Approximate analytical expressions are available to relate c3, ¢4 and K to the skewness
and kurtosis of the data (Winterstein and Lange, 1995). Alternatively an iteration scheme

can be used to find K, c3, and ¢4,

Local Peaks, Y

In the case of a standard narrow-band normal process u(t), a randomly selected peak v(t)

will have a Rayleigh distribution:

F,(v)=1-exp(-1v?) 2.11
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The Hermite model then assumes the functional transformation g or g°, which relates u to

x for each time point. It therefore leads to the same transform at the time of peak values:

= 3
Y g,(v) %> 2.10
v=2g"(y) a, <3

Here y describes a peak of the non-Gaussian process, g and g are givem in Eq. 10, and v
is the Rayleigh distributed peak described by Eq. 2.11.The Hermite model is now used to

describe the local peaks, although it has been fitted to the process.

If we desire to model the peaks directly and circumvent the distribution of the process
(using less data), the Weibull distribution is the most commonly used. Originally, the
Weibull distribution was derived as a type III distribution of global minimum values. It is
based on the assumption of peaks occurring with a limited tail of interest. Instead it is
often used as a distribution of individual peaks. The Rayleigh distribution and the

exponential distribution are special cases of the Weibull.

Weibull

The Weibull distribution is commonly used to model the local peaks of a process.

F, (y)=1—exp[-—[ngy° ]"] 2.12

17




If o and B are known, the mean and variance are given by:

u,.=ﬂ[é—)! 2.13  and 0'_‘2_=,62[(%)!—(§)!2] 2.14

These expressions can be derived by transforming a standard exponential variable to a

Weibull variable, and modifying the standard expressions for the moments of a standard
exponential distribution accordingly. If instead we estimate [, and O'y2 directly from data,

values of o and B have to be determined from Egs. 2.13-2.14 by iteration.

The Weibull distribution in its form above will plot as a straight line on Weibull-scale. If
the data show curvature, the Weibull distribution can be distorted in a way similar to that
done for the normal distribution, leading to quadratic and cubic Weibull distributions.
The quadratic model allows the skewness of the peaks to be fitted in addition to the mean
and the standard deviation. The cubic model also allows the kurtosis of the peaks to be
fitted. As the distribution of peaks is one-sided the quadratic Weibull may often suffice.
By trying to fit both the skewness and the kurtosis the result can become unstable when
extrapolating in the upper tail. This “overfitting” of the distribution of peaks is discussed

in more detail by Kashef and Winterstein (1998).

Often not all the peaks are used to fit the Weibull distribution. Instead, only the peaks
above a certain threshold are fitted. The threshold, which may often for example reflect

the mean of the process, is represented by the term yy in expression 2.12. Alternatively
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instead of adding a quadratic expansion, this third parameter can be fitted to the

skewness, also causing curvature on Weibull-scale. This however is somewhat indirect as
the lower threshold of the distribution is manipulated to better match the upper tail of the
distribution to the data. The quadratic expansion on the other hand manipulates the upper

tail, and is therefore preferred here.

Quadratic Weibull:
In this model, one relates peaks y of a process, possibly above some user-defined lower

limit, yo, to a standard Weibull variable w by:

Y=y = K(W+6w2) for Oay < O3,w 2.15
y_ _ 2
w=2_Yo +e[y Yo ] for O3y > 03w 2.16
K K i

Here w has the standard Weibull distribution:

Fy(w)=1—exp|:—[%}a} 2.12

The skewness of the model is matched to the data by changing € in an iterative process,
which does not affect o and f. These follow from the previous expressions (2.13 and

2.14).
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Global Peaks

There are three general types of distributions for global extremes; Type 1, type II, and
type III distributions. Their differences lie in the assumptions made concerning the
underlying distribution of peaks. For type I distributions we assume that the upper tail of
the underlying distribution of Y falls off exponentially, which is e.g. the case for the
Weibull and the Rayleigh distribution. The type I distribution is commonly called the

Gumbel model, which is described below.

Gumbel

The Gumbel distribution models the global extremes, Z, and has the following

expression:

F, (z) = exp[—e 1 imote | 2.18

where Y and Zpq4e are determined from the moments of the global extremes:

r 1282 Y o 0.577 220

where 7 is Euler’s constant

A Gumbel distribution plots as a straight line on Gumbel probability scale. If the data

shows curvature a polynomial expansion can be added similar to the Hermite of the
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quadratic Weibull distributions. This is discussed in detail by Winterstein and Haver

(1991).

Type II and Type Il distributions
A type II distribution assumes a limited tail on the left at zero, but an unlimited tail on the
right of the underlying distribution of individual peaks. The general form of the

distribution of individual peaks is:
1 k
F,(y)=l—,6(;) for y>0 2.21

The distribution of the global peaks, Z, is the distribution of Y raised to the power of the
number of individual peaks, assuming independence. This gives after some

approximations:

F,(z)=c' forz >0 2.22

Type II distributions are related to type I distributions in a similar fashion as the
lognormal distribution is related to the normal distribution, i.e. Z; = InZy, where Z; has a
type I, and Z;; has a type II distribution. Contrary to Type I distributions, Type II and III
distributions are ill-suited to our moment-fits, due to potential moment divergence (Type
IT) or to the difficulty in predicting truncated distributions (Type III) from moment

information.
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SPAR BUOY RESULTS BASED ON 1HR OF MODEL TEST DATA

Introduction

Recently the first two production spars have been built. The Neptune, operated by Oryx
was installed in 1996, while Chevron installed its Genesis platform in 1997. A third spar
is under construction for the Diana field, which will be operated by Exxon. Presently
production spars are considered by many operators as a very competitive concept for
water depths ranging from roughly 2000 to 6000 ft, offering important advantages over

tension leg platforms (TLPs) and semi-submersibles.

In principle a spar buoy is a very large vertical cylinder, providing buoyancy to support
production facilities, and optionally to store oil. The structure is kept in place by mooring
lines, which can be either catenary or taut. The latter concept may require the use of
polyester lines and is an upcoming solution for deep water. It provides restoring forces
through the elastic properties of the material, in addition to the restoring forces resulting
from the geometry and weight of the lines, which give a catenary mooring system its
stiffness. The horizontal stiffness of the spar system is determined by the mooring
system, while the vertical stiffness is determined by hydrostatic properties, which are
determined by the geometry of the hull. The moorings and the structure are designed such
that natural periods are well above the dominant wave periods. Natural periods for the
different modes of a production spar are generally in the order of minutes, while wave
periods are in the order of seconds. Nevertheless dynamic excitation can occur, which is

discussed in the following paragraphs. Damping is caused by loss of energy through
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turbulence and friction, and is- generally difficult to quantify. We include here the effects
of viscous damping, radiation damping and wave drift damping. The mass of the system
is the mass of the spar buoy plus the mass of the water entrapped in the center well, and
the added mass of the water around the structure. The reader can refer to e.g. Glanville et

al (1991), for more general information about the spar buoy concept.

The Model Test

The data that is analyzed here is the result of a joint industry project, carried out by the
Offshore Technology Research Center at Texas A&M. Model tests were run for a spar
buoy with a catenary mooring system. The characteristics of the structure are summarized
in table 3.1. The prototype scale, on which all values are reported, is 1:55.

The results have been used to study the accuracy of various computational models that
can predict structural response acéurately (e.g. Ran et al., 1996, Weggel and Roesset,
1996, or Mekha and Roesset, 1995). Issues that were of particular interest were the
damping and viscous forces. Different conditions were simulated, of which one
realization of al100 year extreme unidirectional Gulf of Mexico (GOM) storm without
current was selected for the analysis here. The characteristics of this sea state are listed in

table 3.2. The following data has been used from these tests:

¢ The undisturbed (far field) wave elevation, measured at an along-wave point, during
the actual model test.
¢ The disturbed wave elevation near the structure

¢ Horizontal offset of the spar at 54.8 m above MWL, along the vertical cylinder axis
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e Pitch rotation

e Heave motion

The horizontal offset is the combined effect from surge and pitch motions. In general
besides the motions mentioned above, also lateral horizontal motion or sway, caused by
vortex induced vibrations (VIV) can be significant. In practice, these motions are reduced
by helical strakes on the hull, which can be seen in figure 3.2. Sway will not be discussed

here. For the analysis only the horizontal offset data at 54.8 m MWL was used.

Description Notation Value

Diameter D 40.5m
Draft from MWL H 198.2 m
Mass with entrapped water M 2.59-10° kg
MWL to center of gravity Zcg 105.8 m
MWL to center of buoyancy Zch 99.1 m
MWL to mooring connection zf 105.6 m
Radius of gyration to MWL Kr 1228 m
Horizontal mooring stiffness K 191 kN/m
Location of gauge above MWL Zm 54.8 m
Water depth D 922 m

Table 3.1 Characteristics of test spar buoy
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51.8m

’*I—Deck
350m MWL
. Hard Tanks
Production Riser
»:Ea Uiyt Ul Buoya:cy Cans
- | Drilling Risers
=4
Production Risers
,/ i‘ Mooring Lines
- ft Tanks
/ ! 40.5m
Fig 3.1 Cross section of a spar buoy Fig 3.2 Installation of the Neptune spar buoy

Test GOM1
Npts 9702
Nominal Hs (m) 13.1
Nominal Tp (s) 14.0
Observed Hs (m) 14.2
Observed Tp (s) 14.1
Calculated Tz (s) 10.8
Mean (m) 0.06
Standard deviation (m) 3.54
Skewness 0.31
Kurtosis 3.06
Minimum (m) -9.05
Maximum (m) 12.74

Table 3.2 Characteristics of test sea state
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The Data

Fourier Spectrum

The Fourier spectrum of the total response (figure 3.3) shows 3 distinct peaks, at 0.003,
0.015, and 0.07 Hz. These peaks correspond respectively to the natural periods in surge
and pitch, and to the spectral peak period of the sea state (330s, 67s, 14s). All the wave
energy is at the frequencies around the spectral peak period, where the response is related
approximately linearly to the waves. Although there is no wave energy at the two low
frequency peaks for surge and pitch, the system is excited at its natural frequencies by
difference frequencies in the waves. This is the result of a non-linear forcing mechanism,

which is discussed in detail by e.g. Faltinsen et al. (1990).
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Fig 3.3 Wave and response Fourier spectra for GOM1
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Time Series

In order to analyze the data, the response time series was filtered into 3 different
components, surge, pitch, and wave frequency response, by simply introducing frequency
cutoffs at 0.006 and 0.03 Hz. The filtered time series for the 3 components and the total
are plotted in figure 3.4. For the selected location of the observed motions, the 3
components are of almost equal magnitude (7-9 m). Also note that in surge there are on
average only 11 peaks per hour, while in pitch there will be 54 peaks on average. The
limited amount of data of the extremes will affect the predictions we intend to make
further on in this report. There have been discussions suggesting transient effects or
“mode swapping” in the time trace of the total response. The observed behavior in this
test, however, was found to be statistically consistent with one-hour segments of

simulated steady state response to stationary random seas.

Moments

The moments of the process and the peaks are given in table 3.3. The mean of the
components by definition is zero, due to the filtering operation. The mean total offset is
almost 5 m, and has been removed for all the analyses. Also note that in particular for
surge peaks, these moments are estimated from very few numbers, and are therefore

“noisy”. The limited amount of data can also bias the higher moments downward.

The base case we will refer to is a Gaussian process, for which the probability
distribution of the continuous time trace will be normal. For a normal distribution the

mean and standard deviation determine the distribution.
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Fig. 3.4 Time series of the total response and its major frequency components for GOM1
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The higher moments, the skewness and kurtosis, are implicit in the normal distribution.
Their values are respectively 0 and 3. In contrast, the columns denoted m3 and m4 in
table 3.3 report sample skewness and kurtosis values, estimated as in Eqgs. 2.7-2.8. From
these values, one may be tempted to infer that the responses show narrower than
Gaussian distributions: although the skewness values of the process, reported in table 3.3,
are nearly 0, the kurtosis values are systematically less than 3. We should note, however,
that these low values of the kurtosis may be due, at least in part, to the effect of limited
data. This lack of data will commonly lead to systematic underestimation of kurtosis
values. Note, also, that the smallest estimated kurtosis values (2.17 and 2.20) are
associated with pitch and surge, for which fewer independent cycles of motion are

available.

Process mean stav m3 m4
Surge 0.00 3.37 0.10 2.20
Pitch 0.00 4.00 -0.01 217
Wave fr. 0.00 247 -0.03 270
Total 4.94 579 0.08 2.68
Peaks mean stdv m3 CoV
Surge 4.39 1.93 -0.14 0.44
Pitch 5.26 202 -0.03 0.38
Wave fr. 3.11 1.55 0.29 0.50
Total 5.71 4.41 0.76 0.77

Table 3.3 Moments of the response processes and their local peaks

Alternatively, of course, these apparent narrower-than-Gaussian statistics may be due to
some physical hardening mechanism, such as wave drift damping or perhaps non-
linearity in the mooring forces. These two hypotheses (statistically biased moments due

to limited data, vs. true hardening behavior) will be considered further in chapter 4,
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which uses long simulated histories from a theoretical spar buoy response model to

quantify the bias due to limited data.

As noted in chapter 2, if the time trace of the process is a narrow banded Gaussian

process, its peaks will follow a Rayleigh distribution. The Rayleigh distribution of peaks
corresponsing to a general normal process is given below, where i, represents the mean

of the process, and o; the standard deviation of the process.

The Rayleigh distribution represents a special case of the Weibull distribution (Eq. 2.12),
where the exponent, o is equal to 2, B is equal to GX\JZ, and y = .. The coefficient of
variation of the peaks implicit in the Rayleigh distribution when p, = 0 is equal to 0.5228
(Johnson & Kotz, 1970). The implicit skewness is 0.6311 (Johnson & Kotz, 1970). As
noted in chapter 2, the kurtosis of the peaks contains little additional information here, as
it is most useful for two-sided distributions, while the distribution of peaks is only one-

sided (Kashef, 1998).

Table 3.3 shows that a Rayleigh model of peaks is most nearly consistent, in its CoV
value (0.52), with the wave frequency response peaks. As the wave frequency response is
physically thought to be a nearly linear transformation of the nearly Gaussian wave input,
this result is not surprising. In contrast, surge and pitch results suggest somewhat

narrower distributions, in terms of slightly lower CoV values and notably smaller
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skewnesses than the Rayleigh model. Again, however, some of these effects may be due
to the limited model test duration of 1 hour, which most severely impacts the statistics of
surge and pitch components. In contrast, the peaks of the total process show a
significantly higher CoV (0.77) than any of the components. As will be discussed further
below, this arises due to the wide-band nature of the total response: its mixture of 3
frequency components leads, roughly speaking, to a mixture of Weibull distributions,

with correspondingly larger CoVs.

The foregoing results at least suggest the need to include the potential for (1) non-

Gaussian distributions of the process components; and (2) non-Rayleigh distributions of
the response peaks. These are investigated in the next section, using both non-Gaussian
(Hermite) process models and non-Rayleigh (Weibull and quadratic-Weibull) models of

peaks.

Distribution of the Peaks

The 4 distribution models that were discussed in the previous chapter were fitted to the
spar buoy data in order to study their applicability before predicting extreme values,
which is our objective. The Hermite transformed Rayleigh and both Weibull distributions
describe the distribution of local peaks and can be compared directly, although the
Hermite model-is fitted to the' moments of the original process. The Gumbel distribution
describes the global peaks and therefore cannot be compared directly to the other
distributions of local peaks. The number of global peaks is selected by the user, and
requires some insight in the data. In this case surge is the governing factor with the least
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amount of peaks. Selecting more global peaks than there are local peaks would be
inconsistent, as not all of the values in the set of ‘selected peaks’ will be real or local
peaks. We selected the 10-minute global peaks for all time series, which gives 6 peaks
per hour as a compromise between obtaining meaningful global peaks and a sufficient
amount of data. The results were somewhat sensitive to the amount of global peaks. It

turns out however that this effect disappears if we have multiple hours of data (see

section 4.4).

Distribution Plots

The slope of the local peak data, when plotted on Weibull, scale is equal to the exponent
o. The coefficient of variation can be estimated roughly by 1/a. The slope of data on
Weibull-scale gives us an impression of how nearly the data follow a Rayleigh model
(0~2). The slope of the data on Gumbel-scale is equal to -¢t, which controls the standard
deviation of the Gumbel distribution in an inverse way. In particular, the standard

deviation of the Gumbel model equals 1.282/c.. Curvature on either scale suggests the

effect of higher moments is important to capture.

Local Peaks

The distributions of local peaks are shown in Figures 3.5-3.8. A first observation is that if
we exclude the-case of the total response (Figure 3.8), local peak data in the remaining
three cases show no significant curvature on these Weibull scale plots. Hence, a Weibull
model appears to suffice for all three components —surge, pitch, and wave frequency

response. The higher-moment models (quadratic Weibull, Hermite) lead to no significant
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difference, and do not appear in these cases to be worth the additional parameter(s) they
require to fit. Among these three components, the Weibull models of both surge and
wave-frequency response have slopes o near 2 (see Table 3.4), hence a still simpler
Rayleigh model may suffice in these cases. The pitch component shows a narrower-than-
Rayleigh distribution, with alpha nearly doubled (3.7), so that the best Weibull model

provides a notable improvement over the Rayleigh in this case.

Weibull mean stav o g

Surge 427 2.16 207 482

Pitch 5.80 1.75 3.69 6.43

Total 5.99 4.67 1.29 6.48

Wave fr. 3.09 1.57 2.07 3.49

Q Weibull xnin X B 1/t £
Surge -1.34 8.88 1.13 0.48 -0.81
Pitch -0.29 6.27 in 0.27 -0.03
Total -1.85 12.66 1.08 077 -0.73
Wave fr. -0.55 4.59 1.13 048 -0.28
Hermite mean stav *x c3 c4

Surge 0.11 326 0.03 -0.06

Pitch 0.01 3.89 -0.01 -0.12

Total 4.84 594 0.02 -0.02

Wave fr. 0.00 2486 0.00 -0.02

Table 3.4 Distribution parameters

Finally, we consider the total response peaks (Figure 3.8), which are the quantities of
ultimate interest. Here the data itself does not convincingly follow a single Weibull
model (i.e., appear to-plotiinearly)throughout its entire range. It might appear that a tail-
fit Weibull model (e.g., to above 9 m) would lead to a somewhat steeper line (narrower

distribution) than the moment-fit Weibull model shown in the figure. To explain this, it is
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useful to recall that the Rayleigh model, and its Weibull generalizations, were postulated

originally as models of peaks of relatively narrow-band processes.

We may expect this narrow-band assumption to be fairly accurate for each of the three
component processes. The total response, however, represents a mixture of these three
components, notable in view of (1) their very different time scales and (2) their

similar contributions to the total variance of the process (Table 3.3). The resulting
process will be far from narrow-banded, and its peaks may, roughly speaking, be
considered as some type of mixture of Weibull distributions. In such cases, it may be
difficult to expect a single, moment-fit Weibull to accurately track the distribution of
peaks far into its upper tail. The added flexibility of the quadratic Weibull may prove
useful in this case. Note too that the Hermite model can be argued to be an adequate
model in the upper part of the distribution, though it far overestimates peaks at lower
fractile levels. This is not accidental. Recall that the Hermite model does not sample the
actual peaks at all; it merely samples moments of the non-Gaussian process, and creates a
consistent narrow-band process by transforming a Rayleigh model of peaks. Because the
total response is in fact wide-band, the narrow-band Hermite model cannot (and does not
seek to) follow the peak distribution throughout its entire body. Because the effect of
bandwidth becomes lessened for high response peaks, however, it may still be hoped that
the Hermite model remains adequate for rare peak levels of practical interest. (This will
again be taken up in Chapter 4, where additional data better illustrate the differences

among these distributions of total response peaks.)
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10-minute Global Peaks

Finally, Figures 3.9 and 3.10 show the observed distribution of global peaks: i.e., the 6
10-minute maxima in the 1-hour history. These figures are plotted on Gumbel scale; also
shown in each case is the straight line arising from a Gumbel fit to the mean and standard
deviation of these 6 maxima. With 6 data here, there is little chance to assess deviations
from the Gumbel model. What is clear, however, is that the 10-minute maxima from the
wave frequency response (upper half of Fig 3.10) show considerably less variability

(higher slope) than all other cases.

In other words, once we compare global maximum responses over the same interval
(here, 10 minutes), quantities involving slow drift motions (pitch, surge, and total
response) show greater variability than those due to wave-frequency motions. This is
due in part to the far fewer cycles of slow drift motion, and also to the light damping
which induces high correlation among peaks (see table 3.5). Note, for example, the
episodic, slowly evolving nature of the surge component of this model test, as shown in
Figure 3.4. It is not difficult to imagine that its 10-minute extremes will show far more
scatter than those, for example, of the wave-frequency response shown in the same
figure. The net impact of this, as we shall see in following sections, is that we will
generally require longer data sets to accurately estimate extremes of slow-drift motions,

as compared with cases of wave-frequency motion alone.

Peaks: | global local
Surge 0.33 0.50
Pitch -0.07 0.69
Total -0.13 0.03
Wave fr. 0.00 0.35

Table 3.5 Correlation coefficients of subsequent local peaks
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Fig 3.10 Data and fisted distributions plotted on Gumbel-scale for the total and wave frequency response
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Estimating Statistics of the Extreme Value Distribution

This section discusses how we use the foregoing results to estimate the quantity of

ultimate interest; namely, statistics of the distribution of Xmay, the extreme response to

occur in an arbitrary 1-hour duration.

As noted earlier, a first quantity of interest is txmax, the average value of Xpmax to be

expected in an arbitrary hour. From the single hour of model tests, lLxmax can be directly
estimated by the observed maximum value in that hour. (This will of course be quite a
"noisy" estimate, but it will at least be unbiased.) Table 3.6 shows these direct estimates
of the mean max, for each component and the total response, in the row marked
"Observed". Other entries in the columns "Mean max" give estimates based on fitting one
of the foregoing models (Herrnite; of process, Weibull or quadratic Weibull of local
peaks, Gumbel model of 10-minute peaks) to the hour of data. To do this, note that each
model first estimates the distribution function of Xmax, based on either the distribution
function of Y or Z (as in Eq. 1.6). The mean value of X is then estimated from its

distribution function by numerical quadrature methods.
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GOM1 Meanmax  Bs_Stav CoV # peaks GOM1 Meenmex  Bs_Stdv CoV # peaks
Observed 724 0.46 0.064 1 Observed 7.16 0.17 0.024 265
Gumbel 7.93 0.89 0.113 6 Gurmbe! 7.3t 029 0.040 6
Weibul 7.88 0.77 0.097 1 Weibul 8 0.3 0.03%6 265
QWaebul 754 0.65 0.086 1 QWeibull 7.66 027 0.035 265
Hermite 7.16 - - 1 Hermrite 7.62 - - 265

o Woaneee

GOM1 Meanmax  Bs_Stdv CoV # peaks GOMt Meanmax  Bs_Stdv CoV # peaks
Observed 9.5 0.33 0.0 54 Observed 7.8 0.72 0.040 112
Gumbel 10.03 0.59 0.059 6 Gurbel 17.86 0.91 0.051 6
Weibull 10.12 0.55 0.054 54 Weibul 230 141 0.063 112
QWeibull 9.59 0.46 0.048 54 QWeibull 19.49 1.10 0.057 112
Hermite 9.31 - - 54 Hermite 17.34 - - 112

Table 3.6 Mean hourly extremes for GOM1

Bias

In principle, the bias associated with any model’s estimate of [lxmax can be estimated from
the ratio between its numerical estimate and the "Observed" unbiased value. As our
observed value uses only a single observed extreme, however, we should not interpret
these bias estimates too literally. It is somewhat encouraging, though, that most estimates
lie within 10% of the observed values. The notable exception is the Weibull estimate for
the total response, which exceeds the observed value by 25%. This perhaps supports the
previous observation that since the total response shows three distinct spectral modes, its
peaks are less well modeled by a single moment-fit Weibull model (as compared with the
peaks of the relatively narrow-band component processes). This will be borne out in
Chapter 4, in which the only significant bias results from applying the Weibull model to

estimate extremes of the total response.
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Uncertainty

In addition to seeking an estimate that is unbiased -- i.e., correct on average -- we also
wish to consider the variability in the estimate due to limited data. In particular, we wish
to determine whether fitting a model is useful in reducing variability in the estimated

mean maximum xmax, as compared with using simply the observed maximum value.

As noted in Chapter 1, bootstrapping provides one method of estimating this variability.
Its central idea is to create many synthetic, "equally likely" one-hour samples, by
sampling from the observed data set with replacement. For example, the 1-hour surge
component response is found here to have 11 local peaks (i.e., peaks above the mean
response level). As shown in Table 3.6, a Weibull model applied to these 11 data yields
the estimate of [xmax = 7.88m. Bootstrapping methods then suggest that this estimate has
a standard deviation of 0.77m, and hence a CoV of .097 (the columns marked "Bs_Stdv"

and "CoV" in Table 3.6).

To understand the bootstrap process used here, imagine that we have an 11-sided die,
with each of the 11 local peak values written on one of its faces. We then imagine
independently rolling this die 11 times. The resulting 11 outcomes are regarded as a new
"bootstrap" sample. (Each of the outcomes must be a value of the original sample;
moreover, it is almost inevitable that some values will arise multiple times, and other
values omitted, from any particular sample.) We then repeat this exercise to create many
bootstrap samples, and keep track of the estimates of [Lxmax We find from each sample.

The standard deviation of these estimates (here based on 200 bootstrap samples)
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has been reported in Table 3.6. The quadratic Weibull model of surge is also based on all
11 of its peaks, hence its standard deviation is also found by creating new bootstrap
samples of these 11 values. In contrast, the Gumbel model is based on an observed

data set of only 6 10-minute maxima; these form the basis of new bootstrap samples (of
size 6), to which the Gumbel estimator is repeatedly applied to assess its variability.

(The standard deviation associated with the observed values of Lxmax are found here by
bootstrapping the entire vector of local peaks, again 11 in the case of surge, and then

selecting the maximum of each bootstrap sample.)

In surveying the bootstrap-estimated CoV values in Table 3.6, one may note first that the
observed estimates apparently show less variability than those produced by any of the
corresponding models. If these results are truly representative, they would suggest that
fitting these models is in fact disa_dvantageous. But in addition, the net CoV values seem
unusually low, particularly those associated with the direct, observed estimates (e.g., only
2.4% in wave-frequency extreme, and 4% in pitch and total extremes). One may question
whether these numbers are truly indicative of long-run behavior, or perhaps unusually
low due to (1) the happenstance of the particular hour history chosen; or (2) some
systematic uncertainty underestimation by the bootstrap method as currently
implemented. Regarding point (2), our simple bootstrap sampling of response peaks
neglects their correlation, which may well serve to underestimate the variability due to
limited-duration samples. In addition, the bootstrapping method is in general tail-limited,
failing to sample beyond the last data point observed, which may also affect extreme

value estimation.
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As in other issues raised in this chapter, distinction between issues (1) and (2) above
requires a longer database of results, from which systematic trends can be distinguished

from the particular values of this limited 1-hour test. This is the topic of Chapter 4.
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Fig 3.12 Distribution of the predicted hourly extreme value for the total and wave frequency response
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SPAR BUOY RESULTS BASED ON 36 HRS OF DATA

Introduction

The results in the previous chapter are subject to a great deal of statistical uncertainty due
to the very limited amount of suitable model test data that was available. The two main
issues that emerged from chapter 3: “Are bootstrap estimates of the extreme statistics
accurate?” and “Are the predictions of the distribution of extreme values made in chapter
3 biased?” will be revisited using an amount of data that intends to eliminate this
uncertainty. In addition we will explore the answer to our original question “Does fitting
a model, utilizing more of the original data, reduce the uncertainty in our predictions of

the extreme values?” further.

In order to evaluate the results bobtstrapping provided in the previous section, we seek to
create multiple data sets by numerically simulating the model test, instead of resampling
from the original data set. Although the model test that was analyzed was repeated once,
the two hours of measured data do not provide a sufficient amount of data to improve the
results of our analyses much. For the computer simulation we used the results from
second order diffraction analysis, and post-processed these using a routine called
“TFPOP” (Ude 1996). In fact this,simulation-based method may be regarded as a form of
parametric bootstrapping as opposed to the non-parametric bootstrapping method used in
the previous sections. The TFPOP-model for the OTRC spar buoy was developed and

verified by Jha (1997).
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Non-parametric bootstrapping may not be very useful to estimate the bias in our
predictions of the mean extreme value, as all the data sets we compare are produced with
the same, possibly biased estimator. Simulation however, does allow us to evaluate the
bias in our predictions, as we are not assuming a statistical model that we are testing at
the same time. In order to do this however we need to trust that the wave tank accurately
reproduced the wave spectrum that was assumed for the calculations, and that the
computational model provides accurate predictions of the response on a wave by wave

basis. In other words: We have to assume that the model uncertainty added will not affect

our results.

Computational Model

The model of the structural response (i.e. the horizontal offset at 54.8m) assumes a rigid
body with 2 degrees of freedom (surge and pitch). The first- and second-order transfer
functions were established by Kim and Yue (1989, 1991). These results were the basis of
Jha’s model, which includes additional effects, such as wave drift damping, viscous

effects, mooring stiffness, etc. The final results consisted of 4 alternative models for the

spar buoy.

1. Base-case model with diffraction forces

2. Model with diffraction forces and wave-drift damping

3. Model with diffraction forces, wave-drift damping and viscous force from

undisturbed waves
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4. Model with diffraction forces, wave-drift damping and viscous force from

disturbed waves

Jha concludes that, together with diffraction forces, viscous effects should be included to
accurately predict the mean offset of the spar. As the simulations do not provide us with
the disturbed wave surface near the structure, the third model was selected. Fortunately
the use of the disturbed wave surface showed no significant improvement of the results

compared to the results based on the undisturbed wave surface (Jha, 1997).

For time domain simulation we have to solve the basic equation of motion in the time

domain.

M5(t)+ Cx(t)+ Kx(t) = F(t) 4.1
Where:

Xx(t)  : horizontal offset at 54.8 m C : damping matrix

M : mass matrix K : stiffness matrix

F(t)  :applied (hydrodynamic) force

The hydrodynamic force is a function of the random wave process 1\(t), the geometry of

the structure, and the water depth.
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Waves

The wave environment for the test is intended to represent the 100-year extreme
significant wave height sea state for the Gulf of Mexico. A Jonswap spectrum with Hs =
13.1m, Tp = 14.0s, and a peakedness factor of 2.0 was used to represent these conditions.
The model tests however showed an observed Hs of 14m, which was used in the

computer simulations instead. From the wave spectrum complex Fourier amplitudes,

C(ox) are simulated using:

Clw, )=+25, (0, )Aae™ 42

The phase angles 6, are selected random from a uniform distribution between 0 and 2.
The spectral amplitudes Sx(«X) are taken as exponentially distributed random variables

with a mean value given by the wave spectrum at ax (Ude, 1996). These “noisy”
simulations intend to reproduce Gaussian ensembles better than more straightforward
deterministic methods. In addition “noisy” simulation tends to predict the variance of the

second order response better (Ude, 1995).

The irregular waves can be written in the time domain as:

n(t)=Re z Clw, )expliw,t) 4.3
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Although TFPOP uses linear waves as input, the transfer functions for the hydrodynamic
forcing also add a second order Stokes component to the waves. Therefore effectively a

second order random wave model was used.

Hydrodynamic Forcing Model

Diffraction analysis entails applying sinusoidal waves of different frequencies, @,
selected from the wave Fourier spectrum to a structure, as described in the previous
paragraph to the structure. The first-order forces are then found at these incident wave

frequencies as:

fi (t)= Re z C(wk )Hl (a)k )exP(iwkt) 4.4

where H; is the first-order transfer function and the C(;) coefficients are the complex

Fourier amplitudes. The second-order forces are found at pairs of frequencies as:

£,6)=Re >y Clo, )Clw,)H; (@,,0, )expli®, -0, )] 45

where H;' is referred to as the difference-frequency quadratic transfer function (QTF).

Note that in order to find these transfer functions the spar was allowed to float freely
(Kim and Yue 1989, 1991). Linear diffraction analysis was used to estimate the
frequency-dependent added mass and damping for the spar. The second-order diffraction
analysis is computationally intensive and limited to a few frequency pairs (here 8x8
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frequency grid ranging from 0.2 to 1.18 rad/s). A surface spline fitting scheme was used

to interpolate the sparse QTF to finer mesh used by TFPOP (Jha, 1997).

The viscous forces are calculated with Morison’s equation, integrated from the keel to the
free surface. The drag force was based on the absolute fluid velocity with an assumed

drag coefficient of 0.6:

fo(x2)= pR,Cpulx, 2)|u(x, 2))| 4.6

Wheeler stretching (Wheeler, 1970) was used to determine the velocity of the water

particles above the mean water level, for which linear wave theory does not provide a

solution.

Structural Model

The spar’s horizontal offset in the wave direction consists of 2 components, a
displacement in the wave direction, and a rotation in the plane of the waves, respectively
its surge and pitch modes. The structure is modeled as a rigid body with 2 degrees of
freedom, and the following mass, stiffness, and damping matrices. (The first mode is

surge, while the second is pitch.)

M=M,_+M,, 4.7
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where My, is the total mass of the spar and the water entrapped in the center well, and
M. is the (frequency dependent) added mass matrix, reflecting the effects of waves
radiated by the oscillating spar. The added mass was obtained from diffraction analysis,

and is assumed to be constant for low-frequency modes.

[ m -mZ g
Mslr= 2
-mze, Hemk?) .
[ 259-10%g  -2.74-10"kgm '
| -2.74-10"kgm  3.91-10" kgm®
4.9

[ 271-10°%kg  -2.60-10"kgm
“1-2.60-10kgm 3.20-10" kgm®

The symbols are explained in table 3.1.

Note that Mg, and M,q4q are of the same order of magnitude for this large-diameter
structure.

The stiffness matrix, derived from geometry considerations is found to be:

X [k -kZ, }
—kZ, kZ}+k,]|
_[19110°Nm™  -2.02-10'N
| -2.02-10’N 1.60-10‘°Nm"]

4.10
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where:

b/
k, =mR*Hpg(Z o6 —Zcy )"‘4‘P8R4 4.11

The eigenfrequencies associated with these structural properties are 331 s in surge and
69.9 s in pitch, which correspond to the frequencies observed in the response Fourier
spectrum and the free decay tests. The eigenmodes also confirm the model, as they show
the correct geometric relation between surge and pitch (i.e. 1 unit of surge offset results

in zero pitch rotation, and 1 radian pitch rotation results in 100.6 m surge offset).

What remains to be modeled is the damping of the structure, which is the most

challenging part. From modal analysis we can construct the damping matrix C as follows:

-1 -] 2;sws O
"M TCO= 4.12
0 2{ 0,

where @, and @, are the natural periods, and (g, and {, are the damping ratios in surge

and pitch respectively. ® represents the eigenmatrix.

The damping ratios were used to calibrate the model to the observed response. This was
done in an iterative-procedure te match the-bandwidth-parameter;- of the response

Fourier spectrum.
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6=1-2, ) A= [ frs(F)f 4.13

where:

An : the n™ spectral moment S(f) : spectral density at frequency f
P

Alternative methods and pitfalls are discussed by Jha (1997). In addition we may account
for wave drift damping. Although wave drift damping does not represent a physical loss
of energy, it is also an effect that is proportional to the structure’s velocity. In principle it
accounts for the structures relative velocity to the water. On the hydrodynamic forcing
side of the basic equation of motion there will be a term proportional to the velocity of
the water relative to the structure squared. This term is linearized, and the velocity of the
structure is brought to the other side of the equation, where it is grouped with the
damping terms. The calibrated values for { will therefore depend on whether we account
for wave drift damping or not. In this case we do, which results in damping ratios of 4.0%
and 0.5% in surge and pitch respectively. As wave drift damping is frequency dependent
the elements of C are not reported here. The diagonal terms for wave drift damping were
calculated using SWIM (MIT). The off-diagonal terms were estimated with Newman’s

approximation (Newman, 1974).
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The Data

Using the model of the OTRC spar 36 hours of response data were simulated. Analogous

to the previous chapter we will analyze the data, the distributions of peaks, and the

distribution of the global extremes.

Moments

The moments of the process and the peaks are reported in table 4.1 for the total 36 hours.

Process meen Sty el m4
Sue 000 3% a0 313
Pitch Q0 as Qo1 300
Waefr a0 261 am 297
Tota 511 608 Qo4 2%
Pedls meen Stov nB oV
Qe 483 267 3 0%
Fitch 477 2% % 053
Waefr, a%» 172 0s7 053
Tod 541 4% 106 081

Table 4.1 Moments of the process and its local peaks for 1x36 hrs of response data

Contrary to the 1-hour results, the moments for the processes seem to be very Gaussian,
with skewnesses near zero and kurtosises very close the 3. The peaks of each of the
components also appear to be well modeled by Rayleigh distributions, with coefficients
of variation.close to 0.52, and skewnesses near 0.63..Only.thelocal peaks of the total
response, arising from cycles over 3 separate time scales, depart clearly from the
Rayleigh model. This may be expected, as the total response no longer shows the

narrow-band frequency content consistent with the Rayleigh model.
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Besides the first-order wave frequency response, also surge and pitch, the second-order
part of the system’s response seem to be linear. There are various possible explanations
for the Gaussian behavior during the simulation, compared to the model test, which does
not seem Gaussian. The computer model assumes the moorings to behave as a linear
spring, which is a crude approximation of reality, especially for large displacements. The
moorings in the model test are not linear, and may cause a certain amount of non-
Gaussianity. However, more importantly, the amount of data used (e.g. 390 peaks in
surge) has eliminated most of the noise and bias, which was present in the results for a
single hour of data. Table 4.2 reports the means of the 36 1-hour moments of he data set,
which strongly suggest that using a limited 1-hour duration of data biases the skewness
and kurtosis of the process and the skewness and the coefficient of variation of the local
peaks.Although the moments are not as low as the moments of the single hour of
observed data, which are reported in table 3.3, the limited amount of data explains a good
deal of the bias. The higher moments of surge and pitch, which have the least amount of

peaks, are affected most by the data reduction.

Process mean stdv m3 mé4
Surge 0.00 3.79 -0.01 2.59
Pitch 0.00 3.76 -0.01 2.63
Wave fr. 0.00 2.61 0.00 2.96
Total 5.1 6.02 0.05 2.87
Peaks mean stdv m3 CoV
Surge 4.70 2.23 0.25 047
Pitch 4.76 2.28 0.25 0.48
‘Wave fr. 3.25 1.71 0.55 '0.53
Total 5.50 434 0.95 0.79

Table 4.2; Moments of the process and its local peaks for 36x1 hr of response data
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Distribution of Peaks

Distribution of Local Peaks

For practical reasons we cannot display the 36 1-hour distributions per component.
Instead the models were fitted to the entire 36 hours of data (fig 4.1-4.4) The plotted
distributions in fig 4.1-4.4, based on 36 hours of data, clearly show that if we restrict
attention to any single component all of the models behave quite well. There is little
advantage at the component level to generalize the Weibull through a quadratic
transformation. When considering the total response however, the quantity of ultimate
interest, differences between the models emerge.. The ‘observed’ distribution of the total
shows a “corner” in the distribution around 17 m, which the standard Weibull fails to
capture. The quadratic Weibull follows the data better near the T = 1 hr to 6 hr return
period extremes, but it is not clear how the distribution behaves even further out in the
tail. The Hermite model also appéar to be able to capture the tail behavior above the
“corner” well (i.e. for mean return periods of T = 1 to 6 hrs), but fails to capture the body
of the distribution. Recall that the Hermite model here transforms a narrow-band
Gaussian process (with Rayleigh peaks). Hence it does not accurately model —nor was it
intended to model- the less interesting lower fractile peaks of a wide-band process.

These results clearly suggest that fitting a distribution to the total response here should be
done with care. In general problems might arise when a single limited-parameter model,
such as the Weibull, is applied to cases-where actual-peaks arise' from a mixture of
different phenomena. Here, the mixture is due to response components with different tim- -

scales. In previous applications to jack-up forces and responses, the mixture arose from
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the combination of drag- and inertia-induced effects. The Weibull model was found to

show similar, though non-conservative errors in this case (Torhaug, 1996).

Distribution of 10-minute global peaks

The Gumbel model, applied to the 10-minute global peaks shows similar accuracy to the
best of the preceding models (Hermite and quadratic Weibull) based on local peaks. In
particular, fine agreement is found through the T = 1 hour return period response, even
for the total response. Comparing the “total response” plots in Figs. 4.4 and 4.6, all
models except the Weibull accurately predict the observed 1-hour response of about 18
m, while the Weibull model returns a 1-hour response of roughly 20m (i.e. about 10%

€erTor)

At or near the T = 6 hour mean return period, one may view Figs. 4.5-4.6 as suggesting
that the Gumbel model becomes somewhat conservative. At the same time, one should be
wary about inferences based on the last few data points. (In comparing Figs 4.1-4.4 with
4.5-4.6, one should note that the first two plot the offset, x, on log-scale, thereby visually

deemphasising deviations in the upper-tails.)
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Figure 4.1: Surge local peaks and fitted distributions plotted on Weibull-scale
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Figure 4.2: Pitch local peaks and fitted distributions plotted on Weibull-scale
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Figure 4.3: Wave frequency response local peaks and fitted distributions plotted on
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Figure 4.4: Total response local peaks and fitted distributions plotted on Weibull-scale
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The Extreme Value Distribution (1-hour global peaks)

Results in the preceding section treated the 36-hour simulation as one long data set, from
which one can form “best” empirical distributions to compare with fitted models. In this
section we return to considering the consequences of having only one hour of data (e.g. a
single model test) to estimate statistics of Xmax. We now treat the simulations as 36 1-

hour segments, from which we can estimate both the bias and uncertainty that may arise

in a single, randomly selected hour.

Meenmex  Cbs_Stdv CoV Meenmex  Cbs_Stdv Cov
Chsenved 876 22 0232 Coserved 896 094 0105
Gurrbel 878 218 0248 Qurhd 898 087 Q097
Weibull 886 218 0246 Weabul 9.18 049 0.053
QWabul 869 213 0245 QWeibul 891 a2 Q070
Hermite 8 201 0242 Henrite 899 Q75 0.083
P ]

Meenmax  Cbs_Stav Cov Meenmex  Cbs_Stov CoV
Coserved 983 1.81 0.184 Cosenved 19.12 266 013
Gunbd 1007 191 0190 Gurbd 19.08 224 0117
Weibul 1076 204 0190 Waibull 208 303 0137
QWeibu! 1029 206 0200 QWebul 19.99 245 0123
Herrite 10.01 204 0204 Hermite 1896 244 0.129

Table 4.3 Predictions of 1-hour extremes, and their standard deviation based on 36 simulated
hours, no bootstrapping
Bias
We focus in table 4.3 on estimating [xmax, the mean value of the hourly maximum. The
“observed” mean max results are simply averages of the 36 simulated hourly max values.
Compared with these unbiased observed estimates, the various models show rather
consistent estimates of [xmax. Biases are typically less than 5% (table 4.4); the only case

of significant bias (15%) occurs when applying the Weibull model to the total set of
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response peaks. This is entirely consistent with the results of the previous section. Note
also that unlike the previous section, these results rely on the assumption of independent
peaks when estimating Fxmax(x) (see eq.1.6) and hence pxmax. The agreement found here

suggests the adequacy of this assumption for extreme value estimation.

|  surge Ptch  Wawefreq  Tda
Gubel 1.00 1.02 1.00 1.00
Weibull 1.01 1.09 102 115
QWeibul 099 105 099 106
Hermite 095 12 1.00 0.9

Table 4.4 Bias: the ratio between estimated and observed mean hourly extreme.

Bootstrap Bias

The following table shows the ratio between the “observed” standard deviation and the
average of the 36 bootstrap standard deviations. In order to calculate the latter, peaks of
each simulated hour were resampled 200 times in the same fashion in chapter 3, to
predict as many mean 1-hour extremes. From these 200 predictions the “bootstrap”
standard deviation is calculated. Each of the 36 simulated hours was treated in this way to
estimate the standard deviation; the bootstrap result reported here is the average of these
36 values. If bootstrapping provides an unbiased estimate of the standard deviation, this
ratio should be equal to 1.Table 4.5 however shows this ratio is 2.1 on average, which

clearly suggests that bootstrapping may underestimate the standard deviation.

| suee Pich  Waefreq Tod

Cosenved 246 4 1.2 194
Gurbd 1.86 1.9 1.5 136
Weibull 1.3 283 123 1.7
QWeibul! 205 343 1.2 1.68

Table 4.5 Ratio between the “observed” and bootstrap-estimated standard deviation
Note that for the Hermite no bootstrapping could be performed as it is fitted to
the process, while we can only resample peaks.
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Table 4.5 indicates that the bootstrap estimate of the standard deviation is much less
biased for the wave frequency response predictions made with both Weibull models. The
relatively large number of wave frequency peaks includes data far in the upper tail, which
reduces the effect of the truncation of the distribution from which synthetic data sets are
sampled. This truncation effect, which we believe may bias our estimate of the standard
deviation, is much more severe for surge and pitch as they have less peaks. Surge and

pitch peaks will also show higher correlation between peaks, an effect which

bootstrapping analysis ignores.

Uncertainty

The wave frequency response also shows some reduction of the standard deviation of our
prediction using a model (table 4.6). This effect is not observed for pitch and surge.
Again we expect this reduction to be the result of the relatively large number of peaks in

our data set, which reduces uncertainty in our estimate of the distribution parameters.

| suee Ptch  Waefreq  Tad

Gurbe 0.9 1.06 03 084
Weibul 0. 1.13 (155 1.14
QWeibul 0% 1.14 066 o®
Hermrite 091 1.13 0.80 o

Table 4.6 Ratio between the “observed” and the from a model predicted standard
deviation of the 1-hour mean extreme response

An interesting observation is also that coefficient of variation of the peaks of the second
order components, surge and pitch, is approximately twice as large as the coefficient of

variation of the peaks of the first order component, the wave frequency response. This is
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an effect that is generally observed for first and second order processes (e.g. Torhaug

1996).

SRSS

As it appears from the previous paragraph that the distribution of the total response is
difficult to model, one might wonder whether the mean extreme total value can be
estimated from its components, for which fairly straightforward models, such as a
Rayleigh distribution, seem to suffice. The standard method that is used in random
vibrations for this is the “square root of the sum of squares method”, or srss. Although the
method does not have a strong analytical background, it often gives good results for
uncorrelated Gaussian processes. Extremes of a Gaussian process tend to be proportional
to the standard deviation of the process. The standard deviation of the non-Gaussian total
is equal to the “square root of the sum of squares” of the standard deviations of the
Gaussian (Rayleigh) components, (plus the correlation terms which may become
important for closely spaced modes). The prediction of the mean total 1-hour extreme
response using the srss method for the observed values is V(8.76% + 8.96% + 9.83%) =
15.93 m. The observed value is 19.12 m. This relatively large difference may be due to
either the correlation among these components, or to their non-Gaussian behavior (Naess

and Rpyset 1998). The srss method does not seem very useful in this particular case.
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Improving Use of Limited Data

In the previous sections we concluded that fitting a model does not always reduce the
uncertainty in our predictions of the mean (and distribution) of the hourly extreme value.
All of our analysis however has been concentrated on predictions for, and based on, a 1-
hour time period. Previous work by Torhaug (1996) shows that uncertainty can be
reduced by a factor of roughly 2.5 for a jack-up structure, by fitting a model. In order to
make a comparison between the statistics of the extreme response of a spar bhoy and a
jack-up structure, we will mimic the results found by Torhaug in this section. The most
important difference is that the jack-up results were based on using 1-hour response
histories to predict 6-hour mean extreme responses. The following table shows the results

for the 6 observed 6-hour extremes, and the 36 predicted mean 6-hour extremes, based on

1 hour.
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Meanmax  Obs_Stav CoV Meanmax  Obs_Stav CoV
Observed 11.76 1.71 0.15 Observed 1035 062 0.06
Gumbel 11.76 296 025 Gumbel 1045 1.39 0.13
Weibull 1121 274 024 Weibull 1047 0.63 0.06
Q Weibull 10.77 259 024 QWeibull 10.06 0.84 0.08
Hermite 10.02 234 023 Hermite 1022 1.09 0.1
A 7

Meanmax  Obs_Stdv CoV Meanmax  QObs_Stav CoV
Observed 1266 1.74 0.14 Observed 2331 267 0.11
Gumbel 12.92 284 02 Gumbel 2334 357 0.15
Weibull 12.61 247 020 Weibul 27.80 4.0 0.15
QWeibull 11.83 265 0.2 QWebbull - 24.07 339 0.14
Hermite 11.46 264 023 Hermite 21.79 339 0.16
Table 4.7 Predictions of 6-hour extremes, and their standard deviation based on 36 simulated hours, no

bootstrapping

Bias

The ratio between the best estimate of the mean 6-hour extreme value and the observed
6-hour extreme is reported in table 4.8. The differences between the predicted and
observed values are often more pronounced because we are extrapolating a given model
further into its tail. Now the Hermite predictions seem relatively low, while the Gumbel
predictions appear to remain nearly unbiased. This may be because the Gumbel model is
already fit to 10-minute maxes, hence requires the least extrapolation to reach the 6-hour

level.

| surge Pich  Wawfr. Toal
Gurrbel 1.00 12 101 1.00
Weibl 095 1.00 1.01 119
QWeibull 092 0% 097 1.08
Hermite 085 091 099 0%

Table 4.8 Ratio of predicted extremes to observed 6-hour extreme
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Uncertainty

Table 4.7 shows the standard deviation increases if we estimate the mean 6-hour extreme
not with the observed 6-hour extreme, but rather with a model fit prediction that only
uses 1 hour of data. This effect is not surprising: results based on 1 hour of data should be
more variable than those based on 6 hours. What is interesting however is that the

increase in standard deviation of a single prediction of the 6-hour extreme is only roughly

a factor of 1.5 on average.

What is reported in the first column of table 4.7 is the mean of 36 of these estimates for
the fitted models, and the mean of 6 observed 6-hour extremes. The standard deviation of
these estimated means, due to having a limited sample of 36 hours total, is the standard
deviation reported in table 4.7 divided by the square root of the number of estimates. As
the number of estimates is 6 for the observed extremes and 36 for the predicted extremes,
the ratio between the observed and fitted standard deviations decreases by the square root
of 6. The standard deviation of our best estimate of the 6-hour extreme therefore
decreases by a factor V6/1.5 = 1.6 on average, suggesting extrapolating does help,
although it is not as high as the 2.5 observed by Torhaug. Apparently the increase of
uncertainty by extrapolating is less than the reduction caused by using more data.

The reductions of the coefficient of variation are reported below.

| surge Pich  Waefr. Totl
Gurbd 071 065 091 055
Weibull 069 058 041 055
QWeibul 068 067 057 050
Hermite 066 068 073 055

Table 4.9 Ratio of the model-predicted CoV of the mean 6-hour extremes to the CoV of
the 6 observed extremes
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Bootstrap Bias

The following table confirms the bias of the bootstrap estimate of the standard deviation
again, which is higher as we are extrapolating further out into the tails of the underlying
distributions. Moreover the truncation of the distribution of peaks now also affects the

predictions for the wave frequency response.

| Suge Pitch Waefr. Totd

Coserved 204 an 129 1.76
Gumbel 164 1.8 1.60 136
Weibuli 162 25 126 1.81
QWeibuil 1.8 3% 1.31 170

Table 4.10 Ratio of observed CoV to bootstrap-predicted CoV of 6-hour extremes

Extrapolation

The previous results for extrapolating leave us with the question of how small should we
make the time periods to which we fit a distribution of extremes in order to predict an
extreme value with the least amount of uncertainty. The smaller the period, the more we
leverage the effect of having more estimates. On the other hand the shorter the periods,
the further we need to extrapolate. The following tables report the bias and the reduction
of the coefficient of variation compared to 1 hour for fitting the models to 20-minute

periods, producing 108 estimates of the mean hourly and 6-hour extreme.

| sue Pich  Waefr,  Tad

Gumbd Q85 1.00 1.0 0%
Waibu! 094 1.00 1.2 1.14
QWeibul 0% 0.9 092 1.2
Hermite o84 oge 0.9 03

Table 4.11 Bias in 1-hour mean max predictions, based on 20 mins
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| suge Pich  Waefr  Tad

Gurbe (0124 098 1@ 098
Wabul 0ss 0.8 1.01 1.18
QWeibull o84 08 0% 1.01
Hermite 072 080 097 086

Table 4.12 Bias in 6-hour mean max predictions, based on 20 mins

Not surprisingly relatively small biases become fairly large when we extrapolate further
out in the tail. As the limited amount of data to which the models are fit can bias the
higher moments relatively low, these higher-moment models may tend to underpredict

extreme responses.

The effect of this extrapolation on the uncertainty in our estimates is shown in tables 4.13
and 4.14. These report the ratio of the coefficient of variation of the 108 1-hour and 6-

hour predictions of the mean max based on 20 minutes, to the mean “observed” standard
deviations for 1- and 6-hour periods (symbolically: Gest/Gairect, for 1 and 6 hour mean

extremes). Table 4.13 is directly comparable to table 4.6.

| sre Pich  Waefr.  Tad

Gumbel 081 0.81 079 077
Webull (¢41:2] 083 o8 0.81
QWaelbdl 0.80 0.80 e 072
Henrite 080 080 072 Q77

Table 4.13 CoV reduction of 1-hour mean max based on 20 mins vs. 1hr

| suee Ptch  Waefr,  Tod
Gurbe 013 019 015 012
Weibul 013 017 000 014
QWeibul 016 024 013 014
Hermite 015 07 013 014

Table 4.14 CoV reduction of 6-hour mean max based on 20 mins vs. 6hrs
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Without adding much extra bias, the variability in our estimate of the mean reduces
despite extrapolating from a small amount of data for surge in particular (< 4 values on
average). The average CoV reduction forv the components is 0.76 (a factor of 1.3). We
cannot reduce the time segment length any further for surge in view of its natural period
of 5 minutes, as we need at least 3 peaks per period to fit the models. A similar argument
has to be made for the Gumbel distribution, which needs at least 2 global periods within
the time segment that will be fitted (20 mins). In a global period of 10 mins there will be
2 peaks in surge on average, for which a local peak model would probably be more
appropriate. A global period less than 5 minutes would be meaningless for surge. Based
on the previous considerations the segment length of 20 minutes was regarded as an
absolute minimum for surge in this case. For the other components the data are not as
scarce. The following tables show the result of extrapolating 6-minute periods to 1-hour

extremes, and can be compared directly to tables 4.11 and 4.13.

| sue Ptch  Waefr  Tad

Gurbe - 097 1.09 1.2
Waibul - 086 1.01 1.15
QWaibu! - 0.66 0.78 o7
Hermite - 077 0954 o

Table 4.15 Bias in 1-hour mean max predictions, based on 6 mins

| sue Pich  Waefr,  Tod

Gurmbd - 062 0.6 075
Waeibull - 0.64 050 066
QWeibul! - 062 051 054
Hemite - 063 0.63 054

Table 4.16 CoV reduction of 1-hour mean max based on 6 mins vs. 1hr
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As expected the data are insufficient for 1-hour extreme predictions in surge. However,
also for pitch and the total and to a lesser extent for the wave frequency response, the
results are very biased compared to the previous results. There still is a reduction of the
CoV of our predictions, but this irrelevant with the amount of bias observed. Fitting to 6-
minute periods and extrapolating to 10-fold periods of 1 hour clearly shows that using

periods that are too short gives very poor results.

Conclusions

The results suggest that it is possible to reduce the uncertainty in our estimates of the
mean extreme response, from limited data, by producing as many estimates of the mean
extreme response as possible by fitting a model to short time segments. The limiting
factors for the duration of these time segments is the minimum amount of data required to
estimate the moments to fit to, and the amount of bias introduced in our predictions by

using less data.

The results also suggest that the moments for the single hour of model test data are biased
due to limited data, when they are compared to data from 36 hours of computer
simulation. The local peaks of the components of the 36 hours of data showed very good
agreement with a Rayleigh model. The local peaks of the total response, which is the sum
of the three components, seems to be better described by a Hermite or quadratic Weibull
model. The Gumbel model of the 10-minute global peaks showed good agreement for the

total and all components.
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1 CONCLUSIONS

In this report we have discussed estimation methods of the statistics of the extreme
response of a spar buoy, during a 100-year Gulf of Mexico extreme sea state. We
analyzed the statistics of a 1-hour time series of the horizontal offset at 54.8 m MWL,
from a model test, and simulated 36 hours of response data using a computer model
calibrated against the same model test. The statistics of interest were the mean of the
distribution of the extreme response during a certain period of time, and the standard
deviation of our estimate of that mean, quantifying the accuracy of our estimate. The

results were compared and suggestions are made for more effective use of limited data.

The total spar buoy response consisted of 3 narrow-band processes with dominant
frequencies at the structures natural periods in surge and pitch, and at the spectral peak
period of the sea state. Predictions of the mean extreme hourly and 6-hourly response

were made for the total response and all 3 components.

Predictions for a particular period of time were made fitting a parametric distribution to
that period, using the 10-minute global peaks, all the local peaks, and the entire process,
in order to investigate the effect of the amount of data included in the fit. The
distributions were fitted to the moments of the selected data. The distribution models
used were: (1) the Gumbel model (fitted to the 1* 2 moments of the 10-minute global
peaks), (2) the standard Weibull model (fitted to 1% 2 moments of the local peaks), (3) a

quadratic Weibull model (fitted to the 1% 3 moments of the local peaks), and (4) a
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Hermite transformation of the Rayleigh model (fitted to the 1¥ 4 moments of the

process).

From the long duration simulated data (36 hours) we concluded that each of the 3
frequency components, the 2-parameter models capture their apparently Gaussian
narrow-band behavior. For the observed short duration data (1 hour) the distributions of
the components seemed considerably more narrow and “pinched”. We believe this to be
largely due to the effect of limited data, which biases the higher moments in particular. A
similar bias was found from our 36 hours of simulation, if we processed it to estimate
moments separately for each hour. Of course limitations of the computational model may
also account partly for this discrepancy. The model used here was based on 2" order
diffraction analysis, including wave drift damping, viscous forces, and a constant
mooring stiffness. The total response is wide-band mixture of 3 component processes,
where peaks are not captured well by the standard Weibull models. This causes bias in
our predictions of the statistics of the extreme response. The Hermite model, quadratic
Weibull model, and the Gumbel model matched the total response better, and showed

very little bias.

Estimates of the uncertainty in our predictions were made using non-parametric
bootstrapping, and alternatively through simulation (or parametric bootstrapping). The
results showed that bootstrapping local peaks, and negelecting their correlation, may not
be very suitable to estimate statistics of extremes. As compared with the uncertainty

found by long simulations, bootstrapping was found to underestimate the standard
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deviation of our predictions of the mean 1-hour and 6-hour extremes. We therefore
encourage the use of simulation — as opposed to non-parametric bootstrapping — to
consider these issues of bias and uncertainty. While the computational model may not be
perfect, it serves as a useful basis to preserve the distribution and correlation structure of

the data, based on the best physical information at hand.

Based on the results of 36 hours of simulated response it appears that for all models the

uncertainty in the predictions of the mean extreme value can be reduced by dividing the

limited data in short-duration segments from which many estimates of the mean extreme
response can be made by extrapolating a fitted model. It appeared that relatively very

short segments reduced uncertainty most, without adding much bias.
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MOTIONS OF A SPAR BUOY IN RANDOM SEAS:
COMPARING PREDICTIONS AND MODEL TEST RESULTS

Alok K. Jha, P. R. de Jong, and Steven R. Winterstein

Civil Engineering Dept., Stanford University

ABSTRACT

This study compares the analytically predicted motions of a floating spar buoy platform with the
results of wave tank experiments. Results studied include extreme conditions in both the Gulf of
Mexico and the North Sea. Base-case predictions combine nonlinear diffraction loads and a linear,
multi-degree-of-freedom model of the spar stiffness and damping characteristics. Refined models
add the effect of wave-drift damping, and of viscous forces as well. Consistent choices of damping
and wave input are considered in some detail. These successive model refinements are generally
found to improve agreement with the model test results.

KEYWORDS

Nonlinear wave diffraction; offshore structures; random vibration; spar buoys, structural reliability;
wave tank experiments.

INTRODUCTION

This study describes ongoing research into the statistical response behavior and reliability of a
particular deep-water floating structure: a spar buoy. Typically, the spar buoy concept involves a
deep-draft, large-diameter cylindrical floating structure, with slack or taut mooring (e.g., Glanville
et al, 1991). This concept has recently gained increased interest within the offshore community. For
example, Oryx has installed the first production spar (Neptune) in 1996, while Chevron is currently
designing the first spar (Genesis) for both drilling and production. Concurrently, a particular
spar buoy has been designated the “theme structure” of the NSF-sponsored Offshore Technology
Research Center (OTRC), centered at Texas A&M University and at the University of Texas at
Austin.

This study compares analytical predictions of spar surge motions with the results of model tests from
the OTRC wave tank (OTRC, 1993). Comparisons are shown both for summary response statistics
and for complete time histories. Consistent choices of damping and wave input are considered in
some detail. Responses are filtered and compared for three distinct frequency ranges: a relatively
high-frequency contribution due to first-order wave energy, a low-frequency contribution due to
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Figure 1: Elevation vie$ of spar platform. Figure 2: Degrees of freedom for spar.

pitch, and a still lower frequency contribution due to surge. Model tests are studied for extreme
(100-year) conditions in both the Gulf of Mexico and the North Sea.

Results from analytical models are shown here over a range of increasing modelling detail. The base
case includes nonlinear diffraction forces and a linear, multi-degree-of-freedom structural model.
Refinements on this include the addition of wave drift damping, and then of viscous forces as well.
These successively more detailed models are generally found to yield improved agreement with
model test results. The analytical predictions also show the ability to capture another notable
feature of the spar model tests; namely, the apparent “mode-swapping,” between the spar response
in pitch and surge modes, during the hour-long tests.

Spar Buoy Characteristics

Figure 1 shows the prototype dimensions of the spar buoy under study. Note its relatively deep
draft (H=198.2m), particularly with respect to its diameter (D=40.5m). For prediction purposes
the spar buoy hull is assumed rigid, and its mooring lines are modelled as a set of massless, linear
springs. To predict the spar’s motions in the along-wave direction, we adopt a 2DOF model that
includes the surge motion z,(t) and pitch rotation zs(t) at the mean water level* (Figure 2). At an
elevation z above this level, the corresponding along-wave displacement of the rigid spar is predicted
simply as z;(t) + z - z5(t). In particular, we apply this result here with 2=54.8m, to compare with
video-recorded surge motions at this elevation during the wave tests (OTRC, 1995).

Mode Shapes and Periods

Assuming small deformations, the 2 x 2 stiffness and mass matrices can be constructed from geomet-
rical considerations (Jha, 1997). This mass matrix includes added mass terms, reflecting first-order

*Note that we retainthe common ctonvention that numberssurge and pitch DOFs as-“1” and “5” respectively,
although no other DOF's are included here.
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wave radiation effects. The resulting mode shapes and natural frequencies are

1
h=g5

These modal frequencies agree well with the natural periods, 7;=330s and T5=6Ts, estimated from
free-decay tests of the spar (OTRC, 1995). Note that this lower-frequency mode involves a pure
translation, while the higher-frequency mode reflects a pure rotation about an axis located at depth
100m below the MWL. (Equivalently, Eq. 1 implies that a small rotation z5 [rad] is accompanied
by a translation of z,=100zs [m] at the MWL.) These modes directly reflect the translational and
rotational stiffnesses, respectively, of the spar’s mooring system.

He) gy =[1 OF;  fs =55 [Ha) g = 100 17 )

QUALITATIVE RESULTS AND CONSISTENT DAMPING ESTIMATES

We consider here the spar model tests that reflect extreme, roughly 100-year wave conditions. We
also focus on tests that apply wave loads only, neglecting other tests that include simultaneous
current and/or wind loads. This leaves us with three model tests, each lasting 1 hour (all time and
length units here reflect prototype scale). Two of the three are separate realizations of 100-year
Gulf of Mexico seastates, while the third models 100-year North Sea conditions. We refer here
to these seastates as “GOM1”, “GOM2”, and “NS”. (In OTRC internal reporting, these tests are
respectively denoted “aran3”, “aran4”, and “aran3”. To date, only “aran3” has received systematic
study by OTRC investigators; e.g., Ran et al, 1996, Wegge! and Roesset, 1996).

Wave Measurements and Characteristics

A reference, “undisturbed” wave elevation history has been measured during the OTRC tests by
a probe located 125m (prototype scale) from the spar, in a direction perpendicular to the wave
direction. The spectra of these waves are found to be relatively well-fit by JONSWAP spectral
shapes with y=2; the significant wave height and peak period values are estimated as H;=14.1m
and T,=14.1s for the Gulf of Mexico seastates, and H,=14.8m and T,=16.1s for the North Sea test
(Jha, 1997). Note however that our response predictions use the observed wave histories from the
tests, and not the simulated input from a theoretical wave spectral model.

Response Measurements and Characteristics

Figure 3 shows the power spectrum of the spar displacement, measured at height 2=54.8m above
MWL, during the GOM1 test. Note its two low-frequency modes, at around f;=1/330 and fs=1/70
Hz, reflecting motions induced by surge and pitch resonance. As Figure 3 shows, we use bandpass
filters here to separate the observed surge component (0-.006 Hz), pitch component (.006-.03 Hz),
and remaining wave frequency component (above .03 Hz). This gives rms response contributions
of Osurge=3.4m, Opitch=4.0m, and Oyaye=2.5m. Thus a linear force model, which predicts energy
only at the wave frequencies, would capture only a small portion of the response rms. It would also
completely fail to predict the mean response, here found to be 4.9m. The other tests offer similar
results. This shows the need for models of nonlinear forces—diffraction, drag or both—to explain
not only the mean offset but also the amplitude of slow-drift oscillations for the spar. The effects
of both nonlinear diffraction and drag loads are considered below.

Figure 4 shows the corresponding time history of the response during the GOM1 test. -Both the total
response and its filtered components are shown. Consistent with its power spectrum in Figure 3,
the response indeed displays three distinct time scales. What Figure 3 fails to reveal, however, is
that the relative contribution of the different frequency components does not remain constant over
time. For the GOM1 test, the observed response changes qualitatively at around ¢=1500s, when
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Figure 3: Spectrum of measured surge displacements at 54.8m elevation above MWL for GOM1
seastate

the surge component begins to contribute significantly. The other tests show somewhat similar
shifts between the energy in surge and pitch modes—although this “mode swapping” is observed
at different times, and for different durations, in different tests. The wave input histories show no
such episodic nature. This reflects a further modelling challenge: can analytical models predict
not only the correct average frequency content (e.g., the spectrum in Figure 3), but also time-
domain behavior consistent with Figure 47 Clearly, this time-domain evolution of surge and pitch
components depends directly on (1) their initial conditions at the beginning of the test recording
and (2) the damping values assigned to these modes. We therefore discuss these issues, particularly

damping estimation, in some detail.
Estimating Initial Conditions

In the experiments, spar motions were recorded after about 15 minutes (prototype scale), when the
wave tank conditions were deemed to have achieved steady-state conditions. Thus, the assumption
of at-rest initial conditions would corrupt our predictions, more so in the surge mode which contains
relatively few cycles over the hour-long test. To avoid this, our predictions use initial conditions
consistent with the tests; i.e., for each test we filter the observed motions to estimate surge and
pitch components (e.g., Figure 4). The initial values/velocities of these components are then used
to start our slow-drift motion predictions (Jha, 1997).

Estimating Surge and Pitch Damping

Because the tests.include relatively few -cycles of lightly damped motion,-it is challenging to form
precise damping estimates from them. We focus here on frequency-domain damping estimates, using
response spectra from the various tests (e.g., Figure 3). One may, for example, select dampings
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¢; so that our analytical model predicts the correct area under each of these observed spectral
modes (i.e., the variances 02,., and 02icn)- A danger in this approach is that it may mask a
force modelling error (e.g., Ude, 1994). For example, if predicted forces are overestimated we
may overestimate damping in an effort to compensate. Thus, we instead seek damping values
to preserve the observed spectral shape—the rms values O,urge and Opiecn are reserved to test the
model’s adequacy. One such measure of spectral shape is the half-power bandwidth, at which the
response spectrum decays to half its peak value. By setting this bandwidth to its approximate value
from theory— fyp==+( f; to either side of the natural frequency f;—one can estimate the damping
¢; from an observed power spectrum. For example, if the spar buoy has damping ¢;=.05 at the
surge frequency f,=1/330, we find fyp=1/6600 Hz. Unfortunately, from a T=1-hour history, our
finest frequency resolution is df =1/7=1/3600 Hz—too coarse to resolve the half-power bandwidth,

even if no frequency-averaging is applied to the observed spectrum.

We are therefore led to consider the average shape of the response spectrum across frequencies, as
measured by the unitless bandwidth measure § (Vanmarcke, 1972):

5= 1=2/00%); M= [ 1"S:(H)df 2)

Note that in general, any parameter of the form 6,=[1 — A2/(AoA2n)]"/? could be used to reflect
bandwidth: 8, — 0 as the bandwidth narrows. Perhaps the most widely used is é;, e.g, in modelling
peaks of a Gaussian process. We use § with n=1 here, as its lower spectral moments are less sensitive
to high-frequency spectral content. We apply Eq. 2 twice, over the frequency ranges of surge (0-.006
Hz) and pitch (.006-.03 Hz) components, to find separate é values that characterize their respective
modal bandwidths.

For a 1DOF system under broad-band loads, § can be related directly to the damping level (Van-
marcke, 1972, Ude and Winterstein, 1996). To form estimates consistent with our 2DOF model,
however, we select damping ratios ¢; and (s so that our predicted response shows the same § val-
ues, in both the surge and pitch frequency ranges, as found from the observed responses. This is
an iterative process, which must be performed for each choice of (1) seastate and (2) predictive
response model. We differentiate here between 2 seastates (GOM1 and GOM2 versus NS), and
among 4 predictive models. These models are described below, together with the 2 x 4 values of
modal dampings that result. In each case, a corresponding damping matrix C is inferred from the
mass matrix and the matrix & of modal shapes: C=M®Q®"! in terms of Q=diag(4n(:f;).

Predictive Models of Forces and Damping

Our first, base-case model applies diffraction forces only (the “DF” model). Linear diffraction
gives first-order transfer functions Fl(l)(wk) and Fs(l)(wk), the (complex) amplitude of surge force
and pitch moment due to a unit-amplitude wave at frequency wi. A corresponding second-order
diffraction analysis gives Fl(z) (ws, w;) and Fém (wk,wj), the surge and pitch excitation amplitudes
at the difference frequency wyx — w; due to pairs of incident waves at frequencies wy and w; (Kim
and Yue, 1989; Kim and Yue, 1991). These subharmonic excitations drive the surge and pitch
resonant motions, which dominate the spar response (e.g., Figure 3). Note that these diffraction
forces assume as input not the undisturbed total wave elevation/potential but rather its first-order
component. Here we use new methods (Winterstein and Jha, 1997) to identify the underlying
first-order contribution to the observed undisturbed wave.

For this model, the damping matrix C gives the major source of damping. For example, Table 1
shows that this DF model requires the damping ratios (;=4.5% and (s=1.6% to match the spectral
bandwidths estimated from the 2 GOM tests. In this (and other cases) the single NS test suggests
rather lighter damping; indeed, an effectively zero value of pitch damping is not always able to give
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Model Description GOM NS

Gl 6 | G| G
DF Base-case model with diffraction forces 45 1.6 | 1.7 | .001
DF/WDD DF model plus wave-drift damping 33| 0.6 }.001 |.001

DF/WDD/VF(u) | DF/WDD model plus viscous forces from [ 4.0 [ 0.5 | 2.5 | .001
undisturbed waves
DF/WDD/VF(d) | DF/WDD model plus viscous forces from | 6.5 { .001 | 0.1 |.001
disturbed waves

Table 1: Description of 4 models, and consistent damping ratios ¢; and (s in surge and pitch.

as narrow a spectral bandwidth as observed. Note, however, that the NS test includes only a single
hour, making narrow bandwidths more difficult to estimate than over the combined, two hours of
GOM tests.

Our second model (DF/WDD) includes both diffraction forces and wave-drift damping. This
damping force is proportional both to the structural velocity and to the square of the wave am-
plitude. The resulting nonlinear damping will tend to offset large slow drift forces, and perhaps
reduce the extreme peaks of the surge response. We may expect that once wave drift damping is
added, we require lower values of the additional modal damping ¢; than in the DF model. Table 1
shows that this is indeed the case.

Finally, we also implement two models that include viscous drag forces as well as diffraction effects.
These differ only in their choice of wave input: one uses the undisturbed waves, while the other
uses the disturbed waves near the spar, inferred from its reported heave motions and the air-gap
(structure-to-wave distance) measurements. Both models use the Morison’s drag term with Cp=0.6,
and Wheeler stretching (Wheeler, 1970) to integrate effects from the spar bottom to the free surface.
They also both use the absolute fluid velocity; relative velocity effects are assumed reflected through
damping terms. ’

NUMERICAL RESULTS

Wave-Frequency Response

We first compare the wave-frequency portions of the predicted and observed spar responses. These
observed portions are found by applying a high-pass filter, with a low-frequency cutoff of .03 Hz.,
to the measured displacement histories. Figure 5 shows that these predictions fairly accurately
predict not only the qualitative response behavior, but also its detailed cycle-by-cycle evolution in
all three tests. This suggests that our models accurately reflect first-order wave forces, and the mass
properties of the spar. (Because slow-drift forces and damping do not affect this wave-frequency
response, all four of our models predict roughly the same histories in Figure 5. Thus, for clarity
Figure 5 shows predictions only for the simplest (DF) model.)

Slow Drift Response

Figure 6 compares the predicted and observed moments of the slow-drift response. Results are
shown for the rms values o, and o3, corresponding to frequency ranges (0-.006 Hz) and (.006-.03
Hz), and for the total mean offset (which cannot be split directly into surge and pitch contributions).
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response.
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Figure 6: Predicted response mean and standard deviations vs measured results in the three tests.
Standard deviations are shown for both surge and pitch frequency components.

In each case the predicted values from all 4 models are plotted against the observed value from that
test. Because there are 3 tests, this results in 4 x 3=12 data points per plot. A 45-degree line
implying perfect agreement is also shown.

Focusing first on the diffraction-only (DF) model, we find it underpredicts both the mean and rms
in all but one of the 9 observed values. (We return below to the anomalous case, which involves the
pitch rms o5 in the NS test.) Adding wave drift damping (DF/WDD) will not change the mean,
and only weakly affects the rms predictions (again excluding the NS pitch case). This suggests the
need for viscous forces, which contribute both an extra mean force (due to the asymmetric effect
of wave stretching) and a slowly-varying drift force. As Figure 6 shows, the VF(u) and VF(d)
models—which include viscous forces—generally give better predictions of both the mean and rms
levels. Results with the disturbed wave (VF(d)) generally give slightly higher responses—both in
mean and rms—than those using the undisturbed wave (VF(u)). Neither the VF(u) nor VF(d)
model seems systematically closer to the observations; however, both appear superior to models
that exclude viscous forces altogether.

Returning to the anamolous pitch response in the NS test, note from Table 1 that our damping
calibration effectively fails in this case. Although each of the 4 models was assigned only minimal
pitch damping ({s=.001), all of these predict wider spectral bandwidths than that observed in the
NS test. Thus the predictive models here are not “damping-tuned” to the tests as in the other
cases—and the pattern of the 4 model predictions for o5 in the NS case is somewhat arbitrary. As
to why the bandwidth mismatch may occur, recall the increased effect of limited data in the NS
case: here the bandwidth estimation uses only the 1 hour test, as opposed to the 2 pooled hours
used to form the predictive model for both GOM seastates.

Total Response Histories

Finally, we compare the observed and predicted 1-hour histories of the total spar displacement.
Figures 7-9 show these histories for the 3 1-hour tests. All figures show the observed displacement
history at the top, while 3 of the 4 corresponding predictions are shown beneath (the DF/WDD
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model is omitted for clarity). Recall that our particular interest lies in predicting not only overall
response statistics, but also the response evolution and potential mode-swapping (e.g., Figure 4 for
the GOM1 case). Figure 7 repeats that case, and it is notable that all 3 predicted responses show
a similar trend, toward greater surge response, in the second half of the GOM1 test. Note also
that for extreme response events (e.g., observed response above 20m), all of the predictions show
fairly good agreement. The greatest deviations, between the test and predictions, seem to occur
over periods of relatively low response amplitude (e.g., times t=0-1000s, 1500-2300s).

Figure 8 shows similar tendencies for the GOM2 test. Again there is good qualitative agreement:
both the tests and the predictions show a period of relatively little surge (at around t=700-2000s),
followed by a marked surge increase through the rest of the hour. Large observed responses tend
to coincide with high predicted values. The magnitude of these large responses is not as well pre-
dicted, however; predictions generally underestimate the response in the critical high-surge portion
(t=2300-3600s). In contrast, the same predictions often overestimate response in the earlier, low-
surge segment (t=700-2000s). (This potential for mode swapping and compensating errors suggests
the need here to compare observations and predictions through time history behavior, not merely
through summary statistics in the time or frequency domain.)

Finally, Figure 9 shows NS test results. Again there is a transition, near the end of the test, which
produces the largest amplitude responses (indeed, the largest offsets among the 3 tests). It is caused
here, however, by an increase in the pitch as well as the surge component. Note that despite the
potential damping mismatch in this case, the models follow this critical portion of high-amplitude
pitch fairly well (from about ¢=2700s on). As in the GOM1 case, greater deviations between models
and observations occur at earlier portions of the history, involving lower amplitude responses.

COMPARING RESPONSES TO SIMULATED AND OBSERVED WAVES

The foregoing results show how well various models can predict the spar response in the OTRC
tests, based on the corresponding observed wave input. Finally, we study briefly an associated
question: are the observed response properties, such as mode swapping, also consistent with the
response of the spar to idealized, Gaussian simulations of (first-order) random waves? If not, these
observed properties may perhaps reflect special aspects of the wave input in the wave tank; e.g.,
the effect of its finite dimensions.

As earlier noted, both surge and pitch rms components of the observed spar motions vary notably
over periods of roughly 20-30 minutes. We quantify this rms variation by (1) splitting the response
into 20-minute segments; (2) calculating the rms values, 0;...0, in each of the n segments; and (3)
forming the sample mean =Y, 0;/n and variance s2=Y;(c; — 7)%/(n — 1). We focus here on the
two GOM tests, yielding 2 hours and hence n=6 20-minute segments with associated rms values
0;...0¢. The resulting s, values are found to be

s; = 1.22m (surge); s, = 0.50m (pitch) 3)

For comparison we simulatet multiple 2-hour spar histories, and process each as we did the 2-hour
test to find a corresponding s, estimate. These s, estimates from our simulations yield the following

tThese simulations use the DF/WDD/VF(u) model, and first-order Gaussian waves are simulated from a JON-
SWAP spectrum with H,=14m, T,=14s, and v=2. The diffraction analysis internally applies second-order corrections
to the (assumed) first-order wave input; hence the Gaussian model is consistent here. Drag forces for this model
use the total undisturbed wave; for simplicity we use the Gaussian waves here as well. Alternatively, one may add
second-order wave contributions to better approximate the total undisturbed wave.
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mean E{s,] and standard deviation Dl[s,]:
E[s,] = 1.26m (surge); E[s,] = 0.95m (pitch) 4)

Dis,] = 0.47m (surge); D[s,] = 0.45m (pitch) (3)

Thus, while the observed modal rms values may seem highly variable, our simulations show similar
or still greater variability (especially in pitch). Note also that the D(.) values here reflect variability
in s, estimates from different T=2 hour segments. (If T increases, D(.) should decay like T-%/2)
Because Eq. 3 uses 1 T=2 hour segment, these D(.) values suggest the following mean +1-sigma
intervals on the test estimates: s,=1.22 £ 0.47 in surge and s,=0.50 &+ 0.45 in pitch. As even these
relatively narrow, 1-sigma confidence intervals include the average simulation results (Eq. 4), it is
difficult to find statistically significant differences between the tests and the simulations.

CONCLUSIONS

Four models have been established to predict the along-wave motions of a spar buoy in random seas.
These have been implemented and compared with wave tank measurements of the spar displacement,
at a reference elevation 2=54.8m above the mean water level. Results are shown across 3 1-hour
tests of 100-year extreme wave conditions. Specific methods and results include the following:

o In all of the tests, the main rms contribution comes from the resonant response in surge and
pitch modes, at periods of roughly 330s and 70s respectively (e.g., Figure 3). This shows the need
for models of nonlinear forces—diffraction, drag or both—to explain not only the mean offset but
also the amplitude of slow-drift oscillations of the spar.

o The significant low-frequency resonant response also implies the need for accurate estimates of
damping, in both the surge and pitch modes of the spar. We show how these modal dampings can
be estimated from response spectral moments. The resulting dampings are “consistent” with the
other features of the model; for example, the explicit addition of wave drift damping (WDD) is
accompanied by lower levels of the remaining damping in the model (Table 1).

o The wave-frequency response has been found to be fairly well predicted across all 3 tests (Fig-
ure 5). This reflects the modelling adequacy of linear diffraction forces and the spar’s mass proper-
ties. Regarding slow-drift response, models that include only diffraction forces generally underesti-
mate both the mean and rms response levels (Figure 6). To address this, we introduce additional
models that include viscous forces, based on either the undisturbed (far-field) wave or the actual
disturbed wave in the presence of the spar. While it is difficult to conclude which of these is generally
more accurate, both appear superior to models that exclude viscous forces altogether.

e The observed responses display considerable “mode-swapping” between surge and pitch modes
(e.g., Figure 4). Figures 7-9 show that our predictive models, which use the observed wave and
its underlying first-order components, can produce qualitatively similar behavior. They generally
follow the observed trend, in all three tests, toward larger amplitude responses near the end of the
hour. This trend manifests itself in the Gulf of Mexico tests by a late increase in surge-induced
response (Figures 7-8), and in the North Sea test by enhanced pitch response as well (Figure 9).

e While the modal rms values in the tests appear rather variable, long simulations with Gaussian
(first-order) waves show similar or still greater variability (Eqs. 3-5). From the limited 2-hour
duration of GOM tests, it is difficult to find statistically significant differences between these tests
and the simulations.
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Figure 7: Combined (total) surge response time history for GOM1: prediction vs. measurement.
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